Thursday, December 12, 2013

The Benefits Of An RGB Laser

By Cornelia White


An RGB laser is that beam source that emits red, green and blue lights in form of laser beams either as a separate beam for each color or a combination of all the three colors in one beam. Through the process of additive color mixing which is achieved through combination of these lights, a number of many other lights can be obtained.

Arc lamp sources are now being replaced with RGB lasers for light emissions, particularly given that they are much better when it comes to performance as compared to the arc lamp beamers. Arc lamp beamers are known to be the cheaper alternatives but they have limited lifetime, poor image quality and impossibility to achieve high wall-plug efficiency.

These types of lasers achieve coherence of wavelengths, a reason why they outperform many other sources of beams. The coherence is on both time and space allowing for inferences. The consistency in the change of phase properties over a long distance results into high quality images that make them preferred for entertainment and other professional applications.

The narrow optical bandwidth of the three types of beams produced put them close to monochromatic beams, a property that makes them able to produce very sharp and clear images on color mixing. For this reason, their applications are increasing, not forgetting the use in cathode tubes, lamp based beamers, color printers and many types of projectors.

RGB sources however suffer from a major setback given that the power level that is emitted is usually of low level. Most cinema projectors for instance require up to 10 W per color or even more. This level of power sufficiency, maturity or even cost effectiveness is still beyond the existing RGB scanners. When it comes to beam quality, these machines have to operate with high quality beams for them to perform effectively.

This are at times fitted with power-modulators particularly in the instances where the use of optical modulators is not practical due to low-power miniature devices. This is done to achieve better signals and laser diodes are used in most of the occasions. These particular diodes help achieve increased bandwidth to tens or hundreds of megahertz which in turns significantly improves resolutions.

The construction of RGB lasers can be achieved in several manners with the most common ones involving the use of three different lasers with each producing one of the three colors. This method of visible beams however comes with several limitations in comparison to the other methods that employ the use of near infrared rays.

The use of infrared solid-state lasers involves application of a single laser that emits a beam of near infrared (invisible) nature. Such a beam then undergoes through several stages of nonlinear frequency conversion the end of which a three colored beam is produced. The other methods that have also been used to obtain these colors are the combination of parametric oscillators, the use of frequency doublers and the use of frequency mixers.

With the technological advancement, better performing RGB laser machines are being produced. With the current attempt to introduce the fourth color in this type of laser, something that will even improve their performers for the better. The expert prediction is that these forms of lasers will be replacing the other forms of beamers.




About the Author:



No comments:

Post a Comment